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We extend the study of the Fermi surface instability of the Pomeranchuk type into systems with orbital band
structures, which are common features in transition metal oxides. Band hybridization significantly shifts the
spectral weight of the Landau interactions from the conventional s-wave channel to unconventional
non-s-wave channels, which results in anisotropic �nematic� Fermi surface distortions even with ordinary
interactions in solids. The Ginzburg-Landau free energy is constructed by coupling the charge-nematic, spin-
nematic, and ferromagnetic order parameters together, which shows that nematic electron states can be induced
by metamagnetism. The connection between this mechanism and the anisotropic metamagnetc states observed
in Sr3Ru2O7 at high magnetic fields is studied in a multiband Hubbard model with the hybridized quasi-one-
dimensional dxz and dyz bands.
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I. INTRODUCTION

Pomeranchuk instabilities are a large class of Fermi sur-
face instabilities in both density and spin channels, each of
which can be further decomposed into different partial wave
channels.1 This class of instabilities in the non-s-wave den-
sity channel results in uniform but anisotropic �nematic�
electron liquid states,2 which have recently attracted a great
deal of attention in recent years.2–21 In particular, these insta-
bilities have been studied in the context of doped Mott
insulators,22 high Tc materials,3,22 and quantum Hall systems
in nearly half-filled Landau levels.23,24 Experimental evi-
dence has also been found in ultrahigh mobility two-
dimensional electron gases and quantum wells in large mag-
netic fields.25–27

Non-s-wave spin channel Pomeranchuk instabilities are
unconventional magnetism in analogy to unconventional su-
perconductivity, which have been extensively
investigated.2,4,5,28–32 In Ref. 28 by Wu and Zhang, these
states are classified as isotropic and anisotropic phases
dubbed � and � phases as the counterparts of 3He-B �isotro-
pic� and A �anisotropic� phases, respectively. The � phases
have circular or spherical Fermi surfaces with topologically
nontrivial spin configurations in momentum space.28 In the �
phase, the relative spin-orbit symmetry is broken, a concept
introduced in the context of 3He-B phase, while essentially
the overall rotational symmetry is not. The � phases are an-
isotropic electron liquid crystal states with spin degree of
freedom, which have been studied by many groups: the
p-wave phase studied by Hirsch31,32,44 under the name of the
“spin-split” state, and was also proposed by Varma et al.5,30

as a candidate for the hidden order phenomenon in the heavy
fermion compound URu2Si2; the d-wave phase was studied
by Oganesyan et al.2 under the name of “nematic-spin-
nematic” phase. Systematic studies of the ground state prop-
erties and collective excitations in both the anisotropic � and
isotropic � phases has been performed by Wu et al.28,29 Very
recently, Chubukov and Maslov found that when approach-
ing the ferromagnetic quantum critical point, the p-wave
channel spin Pomeranchuk instability develops prior to the
developing of ferromagnetic instability.33

Although unconventional magnetism has not been con-
vincingly identified in experiments, a spontaneous nematic
electron liquid has been observed in the ultraclean samples
of the bilayer ruthenate Sr3Ru2O7,34–36 which has arouse
much research interest.4,37–43 Sr3Ru2O7 is a metallic itinerant
system with the tetragonal RuO2 �ab� planes. It is paramag-
netic at zero magnetic field and develops two consecutive
metamagnetic transitions in the external magnetic field B
perpendicular to the ab-plane at 7.8 and 8.1 T below 1K. In
the state between two metamagnetic transitions, the resistiv-
ity measurements show a strong spontaneous in-plane aniso-
tropy �nematic� along the a and b axis without noticeable
lattice distortions, indicating that this effect is of electronic
origin. It can be interpreted35 as a nematic state with the
anisotropic distortion of the Fermi surface of the majority
spin polarized by the external magnetic field, which is essen-
tially a mixture of the d-wave Pomeranchuk instabilities in
both density and spin channels.

In spite of years of intensive research, most theories re-
main phenomenological without considering the actual or-
bital band structures of Sr3Ru2O7.37–39 Particularly, two key
questions have not been answered satisfactorily. First,
Sr3Ru2O7 is a t2g-band system, containing two quasi-one-
dimensional bands of dxz and dyz and one two-dimensional
band of dxy. Which are responsible for the nematic behavior?
Second, the nematic states require strong exchange interac-
tions in the d-wave channel, but the usual exchange interac-
tion from Coulomb repulsion is mostly in the s-wave chan-
nel. Microscopic theories based on the single band picture of
dxy combined with the van Hove singularity have been
developed.4,42,43 However, their models need a large d-wave
channel exchange interaction which was introduced by hand.
It is difficult to justify the microscopic origin of this interac-
tion in terms of Coulomb interaction.4,42,43 Furthermore,
these theories do not address the fact that the nematic order-
ing does not appear in the single layer compound Sr2RuO4,
which has a similar band structure of dxy.

In this paper, we provide a natural answer to these two
key questions by extending the theory of Pomeranchuk in-
stabilities into multiorbital systems. We propose that it is the
hybridized quasi-one-dimensional dxz and dyz bands instead
of the dxy band that are responsible for the nematic ordering
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based on the following reasoning. The key difference of elec-
tronic structures between Sr3Ru2O7 and Sr2RuO4 is the bi-
layer splitting, which is prominent for the quasi-one-
dimensional bands of dxz and dyz but small for the two-
dimensional bands of dxy. It is natural to expect that the
spontaneous nematic behavior occurs in the bands of dxz and
dyz and is accompanied by an orbital ordering. Furthermore,
the orbital band hybridization between them shifts a signifi-
cant spectral weight of the exchange interaction into the
d-wave channel, thus the nematic ordering can arise from the
conventional multiband Hubbard interactions. This mecha-
nism also applies to other strongly correlated orbital systems.

This paper is organized as follows. We first present a heu-
ristic picture to illustrate the idea how orbital hybridization
enhances the Landau interaction in non-s-wave channels in
Sec. II. In Sec. III, a phenomenological Ginzburg-Landau
free energy is constructed to explain the two consecutive
metamagnetic transitions and the nematic phase in between.
In Sec. IV, we use a microscopic multiorbital Hubbard model
based on the quasi-one-dimensional dxz and dyz bands to ex-
plain the appearance of the nematic state. Conclusions and
outlooks are made in Sec. V.

II. LANDAU INTERACTIONS MODIFIED BY ORBITAL
HYBRIDIZATION

In this section, we present a heuristic picture to illustrate
the enhancement of the non-s-wave Landau interactions from
orbital band hybridizations. For a single band system without
orbital structures, the Landau interaction functions can be
simply expressed at the Hartree-Fock level in the density and
spin channels as

fs�p�1,p�2� = V�q� = 0� −
1

2
V��p�1 − p�2�� ,

fa�p�1,p�2� = −
1

2
V��p�1 − p�2�� , �1�

where V�p�� is the Fourier transform of the two-body interac-
tion V��r�1−r�2��, say, the Coulomb interaction. The high par-
tial wave channel components of V are usually weak, thus
the condition for Pomeranchuk instabilities in high partial
channels is more stringent than that of the s-wave instability
of ferromagnetism.

This situation is significantly changed in multiband sys-
tems with nontrivial orbital hybridization. Let us consider a
simplified two-dimensional example of the hybridized bands
between dxz and dyz and assume the single particle eigen-
states around the Fermi surface takes the form of

����p��� = eip� ·r��u�p��� � ��,

�u�p��� = cos �p�dxz� + sin �p�dyz� , �2�

where �p is the azimuthal angle of p� ; �u�p��� is the Bloch
wave function with the internal orbital configurations;
����= ↑ ,↓� are the spin eigenstates. This orbital structure
has no effects on the Hartree interaction between two elec-
trons with opposite spins, while it significantly changes the

Fock exchange interaction of two electrons of the same spin
which are not completely indistinguishable any more. Con-
sequentially, the exchange interaction between them acquires
an extra form factor describing the inner product of their
orbital configurations as

− V�p�1 − p�2���u�p1��u�p2���2. �3�

The Landau interaction functions change to

fs�p�1,p�2� = V�q� = 0� −
1

4
�1 + cos 2��p1

− �p2
�� � V�p�1 − p�2� ,

fa�p�1,p�2� = −
1

4
�1 + cos 2��p1

− �p2
��V�p�1 − p�2� . �4�

Therefore even if the bare interaction V�p�1− p�2� is dominated
by the s-wave channel, the extra d-wave factor arising from
the orbital hybridization shifts a significant weight into the
d-wave channel.

III. GINZBERG-LANDAU THEORY

Equation �4� above implies that a strong ferromagnetic or
metamagnetic �s wave� tendency also enhances the nematic
ordering �d wave�. Before constructing the microscopic
theory, we illustrate this point through a Ginzburg-Landau
free energy formalism which includes the coupling among
the ferromagnetic order m, the charge-nematic order nc, and
spin-nematic order nsp.

In the square lattice, the two different nematic channels
dx2−y2 and dxy belong to nonequivalent representations.
Therefore we keep only the dx2−y2 channel instability which
is experimentally observed. Due to the experimentally ob-
served anisotropy between the z axis and the ab plane, we
only keep the z component of spin and spin-nematic orders.
The Ginzburg-Landau free energy is constructed as

F�h� = F�m� − hm + rcnc
2 + rspnsp

2 + gcnc
4 + gsnsp

4 + g�m�ncnsp,

�5�

where F�m� is the magnetic order contribution to the free
energy as an even function of m; h is the external magnetic
field; rc	 �2+F2

s� and rsp	 �2+F2
a� are the mass terms of

charge- and spin-nematic orders, respectively; nc,sp are de-
fined as

nc = �
k�,�

���
†�k�����k���f�k�� ,

nsp = �
k�,�

���
†�k���z,�����k���f�k�� , �6�

where f�k�� is a form factor exhibiting the dx2−y2 symmetry;
g�m� is the coupling function between nc and nsp which is an
odd function of m as required by time-reversal symmetry.
The experimentally observed two consecutive metamagnetic
transitions can be reproduced by a suitable designed form of
F�m� sketched in Fig. 1�a� where only the part with m
0 is
shown. It has two common tangent lines marked with dotted
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and dashed lines, which touch the curve at points of m1,2 and
m3,4, respectively. In the external magnetic field h, the solu-
tion of m satisfies the equation

d

dm
F�m� = h . �7�

Therefore, the slopes of the two common tangent lines h1,2
can be interpreted as the fields at which magnetization jumps
from m1 to m2 and from m3 to m4, i.e., metamagnetic transi-
tions occur. When h lies between these two transitions, the
magnetization m evolves continuously.

The development of nematic orders between the two suc-
cessive metamagnetic transitions is triggered by the g�m�
term. Although the nematic instability is enhanced by Eq.
�4�, they are still a weaker instability compared to ferromag-
netism �metamagnetism�. This is because the condition for
Pomeranchuk instability in the d-wave channel in two-
dimensional �2D�, i.e., F2

s,a�−2, is more stringent that in the
s-wave channel, i.e., F0

a�−1. We assume that the charge-
and spin-nematic channels are close to be critical but not yet,
i.e., rc,sp are small but positive. Due to the hybridization term
of g�m�, the eigenorder parameters arise from the diagonal-
ization of the quadratic terms of nc,sp as

n+ = cos �nc + sin �ns,

n− = − sin �nc + cos �ns, �8�

where tanh 2�=2g�m� / �rc−rsp�. The corresponding eigen-
values read

r
 =
1

2
	rc + rsp 
 
�rc − rsp�2 + 4�g�m��2� . �9�

The critical coupling for the n− channel to develop the insta-
bility is

�g��m��2 �
�g�m��2

4rcrsp

 1. �10�

In the presence of the van Hove singularity of DOS, which is
a common mechanism for metamagnetism, all the param-
eters in the GL free energy could change significantly so that
the distribution of the dimensionless coupling function g��m�
may not be smooth. For the nematic order only occurring in
the regime between two metamagnetic transitions, g��m�

must have a peak satisfying Eq. �10� at m2�m�m3 but is
below the critical value elsewhere as sketched in Fig. 1�b�.
Roughly speaking, the underlying physics is that metamag-
netism pushes the majority Fermi surface even closely to the
van Hove singularity which finally drives the nematic
ordering.4 The minority Fermi surface is pushed away from
critical. In the following we will confirm this mechanism
explicitly in a microscopic calculation.

IV. MICROSCOPIC THEORY FOR THE BILAYER
Sr3Ru2O7

We next make the connection to Sr3Ru2O7 by exploiting a
microscopic model with dxz and dyz orbital bands. They have
the bonding and antibonding bands with a large bilayer split-
ting at the order of their band widths. Only the bonding
bands, the even combination of the bilayer orbitals, are con-
sidered because their Fermi surfaces are close to van Hove
singularity which enhances interaction effects. Because of
orbital hybridization, they form closed Fermi surfaces. As
moving around this Fermi surface, the orbital configuration
varies between dxz and dyz exhibiting a d-wave pattern, thus
the mechanism illustrated in Sec. II applies.

The band Hamiltonian H0 reads

H0 = �
k��

	�xz,k�dxzk��
† dxz,k�� + �yz,k�dyz,k��

† dyz,k�� + �k��dxz,k��
† dyz,k��

+ H.c.�� , �11�

with

�xz,k� = − 2t
 cos kx − 2t� cos ky − 4t� cos kx cos ky ,

�yz,k� = − 2t� cos kx − 2t
 cos ky − 4t� cos kx cos ky ,

�k� = 4t� cos kx cos ky . �12�

t
 and t� are the nearest-neighbor longitudinal and transverse
hopping integrals for the dxz and dyz orbitals; t� and t� are the
next-nearest neighbor intra- and interorbital hopping, respec-
tively. The resulting diagonalized band Hamiltonian is

H0 = �
k��

Ek�
+
�+k��

†
�+k�� + Ek�

−
�−k��

†
�−k��, �13�

where

Ek�

 =

1

2
��xz,k� + �yz,k� 
 
��xz,k� − �yz,k��2 + 4hk�

2� �14�

and the band eigenoperators reads

�+,k�� = cos �k�dxz,k�� + sin �k�dyz,k��,

�−,k�� = − sin �k�dxz,k�� + cos �k�dyz,k��, �15�

with the hybridization angle �k� satisfying

tan 2�k� =
2�k�

�xz,k� − �yz,k�
=

− 4t�

t
 − t�

cos kx cos ky

cos kx − cos ky
. �16�

This band hybridization pattern is a lattice version of Eq. �2�
with only the dx2−y2 channel but not the dxy channel. We

FIG. 1. �a� The sketch of the magnetic part F�m� in the
Ginzburg-Landau free energy. The slopes of two common tangent
lines mark the magnetic fields of metamagnetic transitions. �b� The
dimensionless coupling function g��m� has a peak distribution be-
tween two consecutive matamagnetic transitions.
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choose the parameter values of �t
 , t� , t� , t��
= �1.0,0.145,0.0,0.3�, and plot the density of states �DOS� in
Fig. 2. Two peaks in the DOS exist in both �
 bands, which
correspond to the van Hove singularities at k�
= �0,0� , �0,�� , �� ,0�.

We take the general multiband Hubbard model that are
widely used in literatures for the interactions as

Hint = U �
i,a=xz,yz

na↑�i�na↓�i� + V�
i

nxz�i�nyz�i�

− J�
i
�S�xz�i� · S�yz�i� −

1

4
nxz�i�nyz�i��

+ ��
i

	dxz,↑
† �i�dxz,↓

† �i�dyz,↓�i�dyz,↑�i� + h . c .� ,

�17�

where na,� are particle number operators in orbital a with
spin �; na=na,↑+na,↓; S�a are spin operators in orbital a. The
U term is the intraorbital repulsion; the V term is the inter-
orbital repulsion for the spin triplet configuration of two
electrons; the J term represents the Hund’s rule physics; the
� term describes the interorbital pairing hopping.

In the absence of the orbital hybridization, it is not con-
clusive that the Hubbard model can give rise to nematic tran-
sitions because on-site interactions only contribute to the
s-wave channel. We define the charge-nematic order
2nc=nxz−nyz, the spin-nematic order nsp=Sxz

z −Syz
z , and the

ferromagnetic order m=Sxz
z +Syz

z . The mean-field theory in
the eigenbasis of �
 reads

Hmf = �
k��,�=


�����k��
†

��k�� + Vmm2 + Vspnsp
2 + Vcnc

2, �18�

where

Vm =
U

2
+

J

4
, Vsp =

U

2
−

J

4
, Vc = V +

J

4
−

U

2
, �19�

and the less important interband coupling terms �+k��
†

�−k�� are
dropped. The renormalized single particle spectra become

��� = Ek�
� − � − �Vmm − ��Vcnc + �Vspnsp�cos 2�k,

�20�

where �k are the hybridization angle defined in Eq. �16�. The
self-consistent equations for the order parameters read

nc =
1

2N
�
k,�

	nf ,+,��k�� − nf ,−,��k���cos 2�k� ,

nsp =
1

2N
�
k�,�

�	nf ,+,��k�� − nf ,−,��k���cos 2�k� ,

m =
1

2N
�
k�,�

�	nf ,+,��k�� + nf ,−,��k��� , �21�

where the cos 2�k� factor represents the dx2−y2 symmetry of
the nematic orders of nc and nsp.

We are ready to study the zero-temperature phase diagram
with the Zeeman energy term as

Hext = − h �
a=xz,yz

�na,��i� . �22�

� is tuned to reach the filling of n=3.48 at h=0 in the bilayer
bonding bands of dxz and dyz so that the FS of the �+ band is
very close to the van Hove singularity while that of the �−
band is far away from the singularity. The interaction param-
eters are chosen as �U ,V ,J ,��= �2.7,2.5,0 ,0�, which re-
markably reproduce the isotropic-nematic-isotropic phase
transition as a function of h as we expect from the Ginzburg-
Landau analysis.

The magnetization m and the nematic order of the major-
ity spin Fermi surface nc,↑= 1

2 �nc+nsp� are depicted in Fig. 3,
while that of the minority spin Fermi surface is much smaller
�not shown� because its Fermi surface is pushed from the van
Hove singularity. As explained in Ref. 4, the first jump of m
distorts the Fermi surface to touch the van Hove singularity

FIG. 2. �a� Dispersion of the �+ band for k� = �kx ,0� and �kx ,��.
�b� The DOS of the �
 bands whose peaks corresponds to the van
Hove singularities at k� = �0,0� , �0,�� , �� ,0�.

FIG. 3. m and the nematic order parameter for majority spin
band �nc↑= �nc+nsp� /2� versus the external field h. The topologies
of the FS of the �+ band in each phases are sketched in the insets,
where the solid and dashed lines represent the FS of the majority
and the minority spin bands.
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points along one of the ab axes, and the second jump restores
the fourfold symmetry of Fermi surface to cover the singu-
larity in both directions. Compared to Ref. 4, the range of h
for the nematic state is significantly reduced in agreement
with experiment due to inclusion of the magnetic order m
self-consistently in the solution. Furthermore, the first jump
of m is larger than the second one as consistent with the
experiments. This feature can be understood by the asym-
metric profile of the DOS at the van Hove singularity which
drops faster in the higher energy side as shown in Fig. 2.
After the first transition, part of the FS of the majority spin
has moved beyond the van Hove singularity. This reduces the
DOS at the second jump and leads to a weaker second jump
where the nematic order disappears.

We learned another independent work by Raghu et al.45

The same mechanism is proposed for the nematic state ob-
served in Sr3Ru2O7 based on the quasi-one-dimensional
bands. They used a more detailed band structure and further
considered the spin-orbit coupling effect. We further per-
formed the Ginzburg-Landau analysis for the competition
between ferromagnetization and nematic ordering.

V. CONCLUSION AND OUTLOOK

In this paper, we have studied the Fermi liquid instability
of the Pomeranchuk type in orbital band systems. Orbital
band hybridization significantly enhances the Landau inter-
action functions in high partial wave channels, thus provid-
ing a mechanism for the nematic states or unconventional
magnetism from conventional interactions. Consequentially,
metamagnetism �ferromagnetism� induces the nematic be-
havior even with the onsite multiband Hubbard interactions.

This mechanism is applied to the t2g system of Sr3Ru2O7
by attributing the observed nematic behavior to the hybrid-
ized quasi-one-dimensional bands of dxz and dyz, which is the
major difference between our work and Refs. 4, 42, and 43.
Many open questions still need future exploration. In particu-
lar, the quick suppression of the nematic behavior with the
in-plane magnetic field h
 might result from the orbital effect
due to the bilayer splitting as pointed out in Ref. 42, or from
the spin-orbit coupling effect.

The mechanism presented in this paper is also very gen-
eral. It is essentially a Berry phase effect which naturally
arises from electron systems with nontrivial band structures,
such as spin-orbit coupling system and graphene. It can be
understood as a conventional interaction acquires a nontrivial
nature after projected onto a nontrivial band structure. We
further predict that the nematic ordering arises at the ferro-
magnetic transition in spin-orbit coupling systems as a result
of the hybridization between two spin components in the
band structure. For example, the in-plane ferromagnetic or-
dering in the quasi-2D Rashba systems and the surface states
of the topological insulators induces the p-wave distortion of
Fermi surfaces, which will be presented in a later
publication.46
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